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Abstract
We present a general method for obtaining the central charge and the quasihole
scaling dimension directly from ground-state and quasihole wavefunctions.
Our method applies to wavefunctions satisfying specific clustering properties.
We then use our method to examine the relation between Jack symmetric
functions and certain W-algebras. We add substantially to the evidence that
the (k, r) admissible Jack functions correspond to correlators of the conformal
field theory Wk(k + 1, k + r) by calculating the central charge and scaling
dimensions of some of the fields in both cases and showing that they match.
For the Jacks described by unitary W-models, the central charge and quasihole
exponents match those previously obtained from analyzing the physics of the
edge excitations. For the Jacks described by non-unitary W-models the central
charge and quasihole scaling dimensions obtained from the wavefunctions
differ from those obtained from the edge physics, which instead agree with the
‘effective’ central charge of the corresponding W-model.

PACS numbers: 73.43.−f, 11.25.Hf

1. Introduction

In the lowest Landau level in symmetric gauge [1, 2], wavefunctions can be thought of as single-
valued analytic functions of complex variables. As a result, many powerful mathematical tools
can be brought to bear on the study of lowest Landau level physics. In particular, the power
of conformal field theory [3] has been useful for understanding fractional quantum Hall
wavefunctions. Starting with the work of Moore and Read [4], it was realized that correlators
of certain conformal field theories (CFTs) can be used as trial wavefunctions, and further that
the wavefunctions would then inherit the non-trivial topological properties of the CFT [2, 4].
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Perhaps the most interesting of the quantum Hall states that have been constructed using
CFT is the Read–Rezayi series [5] some of which are actually thought to exist in nature [2].
These wavefunctions can be described as the densest polynomial wavefunctions that satisfy a
particular clustering condition—that the wavefunction does not vanish when k particles come
to the same point, but does vanish when the k + 1st particle arrives (this simple rule describes
the Zk Read–Rezayi wavefunction for bosons, a more complicated rule describes the analog
for fermions). Because of the success of the Read–Rezayi wavefunctions, generalizations of
this clustering rule are worth considering. Although the rule could be generalized in many
different ways, one approach has recently been proposed that seems particularly interesting
[6–8]. In this approach, quantum Hall wavefunctions are described as being so-called Jack
symmetric functions [9] (or ‘Jacks’). The mathematical structure of the Jacks allows a detailed
study of these wavefunctions, and the Jacks include the Read–Rezayi wavefunctions, as well as
other previously proposed wavefunctions [10–12], as special cases. Interestingly, the fact that
these Jacks obey a generalized clustering rule was previously pointed out in the mathematical
literature [13, 14], and in that work it was conjectured that these Jack polynomials should
be describable as correlators of certain W-algebra CFTs. This correspondence was proven
rigorously in a special case [14] (the k = 2 case, which corresponds to the Virasoro minimal
model CFTs M(3, 2 + r) in notation described below). However, for the general case, the
connection remains a conjecture. One purpose of this paper is to add substantially to the
evidence for this correspondence. We do this by devising a rather general method that can
be used to extract the central charge from a wavefunction that exhibits a particular (Zk-like)
clustering property. The central charge comes out as a coefficient deeply embedded in the
ground-state wavefunction. When used on Jacks described by unitary models, our method
gives a central charge that equals the one obtained through the fundamentally different method
of counting edge excitations in [8]. For non-unitary theories, the edge method and the method
derived in this paper result in different values of the central charge. The results of the edge
method [8] correspond to the so-called ‘effective central charge’ of the W-algebra whereas the
method presented in this paper directly obtains the central charge of the same theory. We also
show how to obtain the fundamental quasihole scaling exponent as a coefficient embedded
in the un-normalized quasihole wavefunction obtained in [8]. When used on Jacks described
by unitary models, the scaling dimension appears consistent with that previously obtained
through the computation of edge correlators on the disk in [8] (they do not appear consistent
for non-unitary models). Although we apply it only to Jack polynomials, our method works
for any k-clustered wavefunction. The second purpose of this paper is to examine some
of the basic properties of the W-algebras and their applicability as fractional quantum Hall
wavefunctions.

The outline of this paper is as follows. In section 2, we will briefly review the connection
between quantum Hall wavefunctions and conformal field theories and present the strategy
for obtaining the central charge from a generic k-clustered wavefunction. In section 3.1,
we introduce the Jack polynomial wavefunctions. We assume that the Jack polynomials are
described by a CFT with certain properties and we derive several properties of this putative
CFT—including the central charge in section 3.2 and scaling dimensions of certain quasihole
fields in section 3.3. In section 4.1, we introduce the general W-algebra CFTs (in particular
the W-algebras based on sl(k) or Wk algebras). In section 4.2, we discuss the construction
of quantum Hall wavefunctions using these CFTs. In section 4.3, we show that the CFTs
Wk(k+1, k+r), sometimes notated WAk−1(k+1, k+r), precisely match the derived properties
of the Jacks. Rather interestingly we find that, with the exception of the Read–Rezayi series
(including the Moore–Read state and the Laughlin states), all of the Jacks correspond to non-
unitary CFTs. General arguments, presented in a series of recent papers by Read [24, 25],
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appear to preclude such wavefunctions from representing a gapped phase of matter, although
they could correspond to critical points between phases. Gapless excitations have not yet been
identified and the precise meaning of the non-unitarity is still under investigation. A recent
manuscript [15] has proposed a method by which unitary, albeit Abelian, theories may be built
from non-unitary ones. This work builds on the observation [16, 17] that the Abelian Jain state
is a 2-quasielectron–2-quasihole excitation of the non-unitary Gaffnian state (which allows a
Jack polynomial description).

We note that other W-algebras exist which are unitary, although many other CFTs also
exist with similar clustering properties. We point out that other W-algebra wavefunctions,
which would be unitary, are also possible.

2. Constructing quantum Hall states using conformal field theories

In this section, we review the construction of quantum Hall states from CFTs. A more detailed
discussion is given in [2, 4, 5]. Those familiar with this topic may be able to skip much of this
section.

We will consider CFTs with a simple current ψ1 having Zk symmetry (i.e., it fuses
with itself k times to give the identity). In the original work on parafermions [26], the
operator product expansion (OPE) for such a theory is given generally by the following (with
n = 0, . . . , k − 1 being defined modulo k):

lim
z→z′

ψn(z)ψn′(z′) ∼ (z − z′)�nn′ ψ(n+n′)modk(z
′) + · · · , (1)

where ψ0 is interpreted as the identity field I and ‘· · ·’ indicates less singular terms, and

�nn′ = h[(n+n′)modk] − hn − hn′ . (2)

Here hn is the conformal dimension (scaling dimension or conformal weight) of the field ψn

which we assume to be given by the expression

hn = rn(k − n)

2k
(3)

with r � 2 being an integer. The usual parafermions of Fateev and Zamolodchikov [26]
are recovered for r = 2. For other values of r > 2, we obtain a modified parafermion-like
theory. Indeed, such a modification was proposed very briefly in appendix A of [26]. We will
refer to a CFT of this form as being (r/2)th generation Zk CFT, and we will use the notation
Z

(r/2)

k proposed by [27]. Note that all of the cases of this type that we are aware of with r
odd correspond to non-unitary theories. (The fact that odd r are allowed was apparently first
pointed out in [28].) Note that generically, this OPE, without specification of further terms in
the expansion, is not sufficient to completely define the CFT, and there may be many allowable
CFTs that fit this description of Z

(r/2)

k . These different possible theories are distinguished,
among other ways, by their central charges.

We will further assume that in the relevant CFT, there are no additional conserved currents.
In this case should any two primary fields fuse to give the identity I, conformal invariance
gives us [3]

lim
z→z′

φ(z)φ′(z′) = (z − z′)−2h[I + (z − z′)2(2h/c)T (z′) + · · ·], (4)

where h is the scaling dimension (conformal weight) of the primary fields φ and φ′ (these
dimensions are necessarily equal if they fuse to I), c is the central charge of the theory and T
is the stress–energy tensor that satisfies the OPE [3]

lim
z→z′

T (z)φ(z′) = h

(z − z′)2
φ(z′) + · · · (5)

for any primary field φ with scaling dimension h.
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Given a conformal field theory with these properties, we can construct the multiparticle
wavefunction as a correlator [2, 4, 5]

�(z1, . . . , zN) = 〈ψ1(z1)ψ1(z2) · · · ψ1(zN)〉
∏
i<j

(zi − zj )
r
k

+M (6)

with M being a non-negative integer (throughout most of this paper we will assume M = 0).
We will assume that the number N of particles is a multiple of k (otherwise the correlator term
is strictly zero). Note that the usual Gaussian factors that occur for wavefunctions in the lowest
Landau level are not written explicitly here (see [2, 4] for further discussion of this issue).
The case of even M will correspond to a boson wavefunction and odd M will correspond to a
fermion (electron) wavefunction.

The fusion relation equation (1) gives us

lim
z1→z2

ψ1(z1)ψ1(z2) ∼ (z1 − z2)
− r

k ψ2(z2) + · · · . (7)

This fractional power is precisely canceled by the fractional Jastrow factor in equation (6) so
that the wavefunction is properly single valued in the electron coordinate.

It will sometimes be convenient to think of the above Jastrow factors in equation (6) as
having resulted from vertex operators eiβϕ(z) for ϕ being a free massless scalar Bose field
satisfying

〈ϕ(z1)ϕ(z2)〉 = −log(z1 − z2) (8)

such that we have the operator product expansion

eiaϕ(z1) eibϕ(z2) ∼ (z1 − z2)
ab (9)

which results in the conformal weight [3] (scaling dimension) of eiϕβ being β2/2. Strictly
speaking, the correlator of these vertex operators is zero unless a neutrality condition is
satisfied. This issue is ignored as we assume a smeared background charge (this background
charge also reintroduces the above neglected Gaussian factors [4]).

Now we can define the ‘electron’ operator

ψe(z) = ψ1(z) eiϕ(z)β (10)

and choosing

β =
√

M + r/k (11)

we can rewrite equation (6) as

�(z1, . . . , zN) = 〈ψe(z1)ψe(z2) · · · ψe(zN)〉. (12)

Again for M even this is a fully symmetric wavefunction and for M odd a fully antisymmetric
one. By using the OPEs, it is easy to establish that in the M = 0 case the wavefunction does
not vanish as k particles come to the same point, but vanishes as r powers when the k + 1 st
particle arrives: this is a simple k-cluster wavefunction in the notation of [29]. As noted in
that work, such wavefunctions do not exist for kr odd, and correspondingly no Z

(r/2)

k theory
exists for kr odd. For general M, the wavefunction vanishes as n(n−1)M/2 powers as n � k

particles come together and vanishes as (k + 1)kM/2 + r powers when the k + 1th arrives.
In the case of M even, the wavefunction is fully symmetric corresponding to a wavefunction

for bosons, and we should expect the elementary ‘electron’ field ψe to have an integer
dimension. However, with M even the scaling dimension of ψe (the sum of the dimensions of
ψ1 and the vertex) is an integer only for even r and is a half-integer for r odd. Conversely for
M odd, one has a fully antisymmetric wavefunction, but ψe has a half-integer dimension only
for r even. This should make one suspect that there are some problems for the case of odd r,
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and indeed there are no unitary theories for the case of odd r which precludes the possibility
of odd r wavefunctions representing gapped phases of matter. (It would be nice to develop a
deeper understanding of precisely how these two facts are related.)

Using the arguments of [2, 4, 5, 29], it is easy to establish that the degree Nφ of the
polynomial wavefunction � is given by

Nφ = ν−1N − S, (13)

where

ν = k

r + kM
(14)

is the filling fraction and

S = r + M (15)

is the so-called ‘Shift’ on the sphere. From here on, we will be considering quantum Hall
effect of bosons and we will consider the case of M = 0 for simplicity. Generalization to
other values of M is relatively trivial.

The chosen CFT will typically contain many other primary field operators. Suppose the
conformal field theory contains a field σ with operator product expansion

lim
z1→z2

σ(z1)ψ1(z2) ∼ (z1 − z2)
�σ1φ(z2) + · · · . (16)

Here we must have

�σ1 = hφ − h1 − hσ , (17)

where hσ and hφ are the conformal weights (scaling dimensions) of the fields σ and φ,
respectively. The fact that there is only one conformal family on the right-hand side of
equation (16) is guaranteed by the assumption that ψ1 is a simple current.

We then define a quasihole operator

ψσ
qh(z) = σ(z) eiϕ(z)γ , (18)

where

γ = (s − �σ1)/β (19)

with s being a non-negative integer. This choice of γ is the only possibility that will make
the wavefunction � (equation (20)) properly single valued in the electron coordinates zi . The
resulting wavefunction can be written out as

�(z1, . . . , zN ;w1, . . . , wn) = 〈ψqh(w1) · · · ψqh(wn)ψe(z1) · · · ψe(zN)〉 (20)

= 〈σ(w1) · · · σ(wn)ψ1(z1) · · · ψ1(zN)〉

×
∏
i<j

(zi − zj )
β2

N∏
k=1

n∏
m=1

(zk − wm)s−�σ1

n∏
p<m

(wp − wm)γ
2
.

(21)

The charge on such a quasihole is given by the exponent s − �σ1 which pushes away a
corresponding fraction of the ambient density from the position of each quasihole. It is easy
to show [5] that the resulting charge must be

e∗
qh = (s − �σ1) eν, (22)

where −e is the charge of the electron. Note that, for example, by fusing with p electron fields
we can also create quasiparticles with change e∗

qh − pe.
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One trivial possibility is to choose the field σ to be the identity field (with dimension 0).
In this case, the identity field fuses with ψ1 to give ψ1 again (so φ = ψ1 in equation (16)) and
�σ1 = 0. The quasihole is then given by s = 1 in (the s = 0 case gives the identity operator).
We identify this case as the Laughlin quasihole and we then write

ψ
Laughlin
qh (z) = eiϕ(z)/β . (23)

This can be inserted into a wavefunction resulting in a Jastrow factor. For example,

〈
ψ

Laughlin
qh (w)ψe(z1) · · · ψe(zN)

〉 = 〈ψe(z1) · · · ψe(zN)〉
N∏

k=1

(w − zN), (24)

where the correlator on the right-hand side is the wavefunction in the absence of quasiholes.
The charge of this quasihole is e∗

qh = eν as is expected for a quasihole created by a single flux
insertion [1].

More generally, however, for non-trivial fields σ the charge on the quasihole will be
some fraction of the Laughlin value. Furthermore, when several non-trivial (non-Laughlin)
quasiholes are created, the correlator separates into conformal blocks. This is the hallmark of
non-Abelian statistics—the fact that there are several orthogonal wavefunctions that describe
the set of quasiholes at one particular set of positions [2, 4]. By examining the fusion rules of
the quasihole operators σ, we can count the number of conformal blocks and determine the
degeneracy associated with the non-Abelian statistics.

2.1. A strategy for obtaining the central charge of a theory from wavefunctions

Given a polynomial wavefunction in the lowest Landau level, we would like to identify
a CFT which gives this wavefunction as a correlator. Let us imagine that we are given
a bosonic polynomial wavefunction �(z1, z2, z3, z4, . . . , zN) with several properties that
make it compatible with CFTs of parafermion type as described above. We assume that
the wavefunction does not vanish as k particles come together, but vanishes as r powers when
the k + 1 st arrives (we assume M = 0 bosons in the language above). We further assume that
it is a simple cluster wavefunction [29], meaning that it is filling fraction ν = k/r with shift r.
As described above, such wavefunctions are compatible with CFTs of parafermion type, and
in particular can be compatible with Z

(r/2)

k CFTs.
We extract the putative correlator by removing the Jastrow factor (see equation (6))

φ0(z1, z2, . . . , zN) = �(z1, z2, . . . , zN)∏N
i<j (zi − zj )1/ν

. (25)

We will further assume that the CFT we are searching for is rational—that the number of
primary fields is finite. Our general strategy will be to successively fuse k coordinates together
to obtain the identity field again (see equation (1)). The subleading term of the final fusion (see
equation (4)) allows us to produce the stress–energy tensor T with a coefficient that depends
on the central charge.

Now let z1 = z2 + ε1 and let ε1 → 0; then expand in ε1. Given the expected OPE
equation (1), we should obtain something of the form

φ0(z2 + ε1, z2, . . . , zN) = 1

ε
2h1−h2
1

(φ1(z2, . . . , zN)

+ ε1φ1,1(z2, . . . , zN) + ε2
1φ1,2(z2, . . . , zN) + · · ·). (26)
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Since the function � is given to us, we can easily determine φ1, φ1,1, . . . explicitly. If the
divergence exponent is not 2h1 − h2 then we conclude that the CFT (if it exists) is not of the
Z

(r/2)

k parafermion type. In terms of correlators, the function φ1 should be given by

φ1 = 〈ψ2(z2)ψ1(z3)ψ1(z4) · · · ψ1(zN)〉. (27)

Now assuming that k > 2 we repeat the procedure taking z2 = z3 + ε2 and let ε2 → 0;
then expand in ε2 to obtain

φ1(z3 + ε2, z3, . . . , zN) = 1

ε
h1+h2−h3
2

(φ2(z3, . . . , zN)

+ ε2φ2,1(z3, . . . , zN) + ε2
2φ2,2(z3, . . . , zN) + · · ·). (28)

We continue this procedure k − 2 times. We finally obtain

φk−2 = 〈ψk−1(zk−1)ψ1(zk)ψ1(zk+1) · · · ψ1(zN)〉. (29)

Taking the last limit we obtain

φk−2(zk + εk−1, zk, . . . , zN) = 1

ε
2h1
k−1

(φk−1(zk, zk+1, . . . , zN)

+ ε2
k−1φk−1,2(zk, zk+1, . . . , zN) + · · ·). (30)

Here we have used the OPE equation (4),

φk−1(zk, zk+1, . . . , zN) = 〈I (zk)ψ1(zk+1) · · · ψ1(zN)〉 = 〈ψ1(zk+1) · · · ψ1(zN)〉, (31)

which should be independent of the position zk . Note that there is no term φk−1,1 linear in
εk−1 in the expansion (again, if this is not true, it is evident that we do not have a CFT of
parafermion type). Indeed, it will be useful below to note that the subleading term vanishes
when the leading term is the identity. The second term, on the other hand, from equation (4),
gives us

φk−1,2(zk, zk+1, . . . , zN) = (2h1/c)〈T (zk)ψ1(zk+1) · · · ψ1(zN)〉. (32)

We now take one more limit setting zk = zk+1 + εk and let εk → 0; then expand in εk . Using
the OPE equation (5) we obtain

φk−1,2(zk+1 + ε, zk+1, . . . , zN) = 1

ε2
k

[φk(zk+1, . . . , zN) + · · ·] , (33)

where

φk = (
2h2

1

/
c
)〈ψ1(zk+1) · · · ψ1(zN)〉. (34)

Thus by taking the ratio

φk(zk, . . . , zN)

φk−1(zk, . . . , zN)
= 2h2

1

/
c, (35)

we are able to extract the putative central charge. A similar scheme will also be used below to
extract scaling dimensions of quasiparticles.

3. Jack wavefunctions

3.1. The basics of using Jack symmetric functions as quantum Hall wavefunctions

In this section, we describe the construction of quantum Hall wavefunctions as Jack symmetric
functions. This reviews work of [6–8, 13, 14, 20]. In addition to the interesting clustering

7
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properties of the Jacks mentioned in section 1, the bosonic Jacks as well as their fermionic
counterparts (equal to bosonic Jacks times Vandermonde determinant) have special properties
[20, 35] that make them simple to work with both analytically and numerically. Notably,
they can be evaluated numerically far easier than by usual techniques of exact diagonalization
of generalized Haldane pseudopotentials [18] currently used to obtain model wavefunctions.
Methods developed in [35] allow for a factor of 1000 improvement in computation time for
model wavefunctions over prior methods. Expressing other wavefunctions in terms of their
Jack components can similarly result in large numerical speedups.

The Jack symmetric functions (Jacks) are polynomials satisfying a number of particular
properties. We refer the reader to [9, 20–23] for a more detailed discussion of many of these
properties. We write a general Jack as

J α
λ (z1, z2, . . . , zN). (36)

This is a function of N complex variables zi and parametrically depends on a real so-called
‘Jack-parameter’ α, as well as a partition λ of length |λ| where |λ| � N . A partition λ is an
ordered set of numbers λi � λi−1, 1 � i � |λ| such that

|λ|∑
i=1

λi = �λ, (37)

where �λ is some integer number. Each partition can be uniquely associated with a Young
diagram [22] in the standard way. Note that we have followed the usual convention that a
partition is made up of positive integers with no integer equal to zero. However, frequently
below we will want to think of the partition λ as having exactly N pieces, thus we can do this
by including in addition N − |λ| occurrences of the integer 0.

A detailed definition of the Jack polynomial is given in appendix A for the interested
reader. For the present, however, it suffices to state that the Jacks are simply polynomials
satisfying a great number of interesting properties that have been previously worked out
[9, 20–23].

In a recent work by Haldane and Bernevig [6–8] it was pointed out that setting the Jack
parameter

α = −(k + 1)/(r − 1), (38)

with k + 1 and r − 1 coprime, generates symmetric polynomials (which we think of as bosonic
quantum Hall wavefunctions, corresponding to M = 0 above) satisfying the admissibility
condition that the wavefunction vanishes as r powers when k + 1 particles come to the same
point. This admissibility condition had been noted previously in the mathematical literature
[13, 14] and for the Read–Rezayi states by Haldane [19]. In [6], it was shown that the
requirement of translational invariance uniquely selects all the Jacks that can be good FQH
wavefunctions, as we will discuss further below. Translational invariance immediately gives
the Jack parameter α = −(k + 1)/(r − 1) as well as the (k, r) admissibility on partitions.
Among the wavefunctions that can be described as Jacks are the Read–Rezayi series [5]
(including the Moore–Read state [4]), the Laughlin wavefunctions [1] and the Gaffnian [12].
We emphasize that the Jack parameters here are negative rational, in contrast with other
applications to condensed matter systems such as the Calogero model [45], which have
positive Jack parameter.

An important ingredient of Jack polynomials is the so-called root state. This can be
constructed out of the partition λ according to

Rλ = S
[

N∏
i=1

z
λi

i

]/
N , (39)

8
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where the symbolS represents the symmetrization over all the permutations of zi (equivalently,
one may think of it as computing the permanent perm

(
z
λj

i

)
) and N is the normalization factor

which we define in (40). It is convenient to think of a root state as representing occupation of
orbitals. Imagining the orbitals ϕm ∼ zm in the lowest Landau level in the plane, we describe
the root state Rλ as a set of occupation numbers nm(λ) for bosons occupying orbitals where
summing the total number of particles in all orbitals gives the total number of particles N. In
other words, nm(λ) is the number of times the integer m occurs in the partition λ. For example,
a root polynomial corresponding to the partition λ1 = 2, λ2 = 0, given by Rλ = z2

1 + z2
2,

can be described in terms of occupation numbers n0 = 1, n1 = 0, n2 = 1. In this paper,
we will almost always write partitions in terms of occupation numbers. For example, for the
root polynomial introduced in this paragraph we will write λ = [1, 0, 1], where the terms in
the square brackets are nm(λ) for m = 0, 1, 2. (See [6, 7] for more details on the translation
between the orbital occupation representation of partitions and the conventional representation
of partitions.) In terms of nm(λ), the normalization factor N is given by

N =
∏
m

nm!. (40)

Its role is simply to eliminate any additional factors which might arise from symmetrizing
already symmetric expressions.

A Jack symmetric polynomial is not simply equal to its root state. Each Jack is labeled by
a root state, but is actually a superposition of the root state along with many other descendant
states which can be constructed by ‘squeezing’ occupation numbers—i.e., which can be
obtained by starting with the root state and moving bosons toward each other in pairs [6, 7]. In
the language of partitions, the descendent states are dominated by the root, or highest weight,
state. The Jack is given by a particular combination of the root state and its descendants which
make it an eigenvalue of a differential operator known as the Laplace–Beltrami operator [20].

Not every Jack polynomial can correspond to a quantum Hall wavefunction. Indeed,
some of them are not even translationally invariant (that is, they change under the change of
variables zi → zi + a). In [6], it was shown that the Jacks that correspond to translationally
invariant wavefunctions are (a) those with Jack parameter as in equation (38) and (b) have
partitions corresponding to root states with the property that no more than k bosons may
occupy r consecutive orbitals, for some given k and r. It is interesting that in the limit of a thin
cylinder, the root state is precisely the wavefunction, which means that the entire physics just
becomes an issue of distributing bosons so as to satisfy the admissibility condition. This fact
has been exploited in a number of recent publications [30–34].

Given N coordinates, with N divisible by k, the root partition that yields the lowest degree
polynomial (and hence the highest density wavefunction) is given by the occupation numbers

λ = [k 00 · · · 0︸ ︷︷ ︸
r−1 times

k 00 · · · 0︸ ︷︷ ︸
r−1 times

k · · · 00 · · · 0︸ ︷︷ ︸
r−1 times

k], (41)

where there are N/k orbitals filled with k bosons each. We abbreviate this occupation with
the obvious notation

λ = [k0r−1k0r−1k · · · 0r−1k]. (42)

If we consider the corresponding Jack symmetric function to be a wavefunction for bosons

� = J α
k0r−1k0r−1k···0r−1k

(z1, . . . , zN) (43)

with α as above, we generate a wavefunction that vanishes as r powers when k + 1 coordinates
approach each other, but does not vanish when k coordinates come to the same point. As
discussed in [6, 7], this is a wavefunction at filling fraction ν = k/r with shift S = r . Thus,
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this is a simple k-cluster wavefunction as discussed in [29]. Further, this suggests that such
a wavefunction may be described as a correlator of a Z

(r/2)

k CFT as described in the previous
section (with M = 0). We will show additional evidence below that this is indeed the case.

One can similarly describe quasihole states in terms of Jacks that have lower density root
partitions. For example, if we allow the N bosons to occupy one additional orbital, admissible
root partitions include

[0k0r−1k0r−1k · · · 0r−1k] (44)

[1(k − 1)0r−1k0r−1k · · · 0r−1k] (45)

[k0rk0r−1k · · · 0r−1k] (46)

[k0r−1(k − 2)20r−1k · · · 0r−1k] (47)

...

and many others. These many possibilities correspond to both the multiple types of
quasiparticles and the many positions where the quasiparticles may be placed. One may
analyze all of the possibilities to categorize the possible quasiparticle types, and further one
can consider how these quasiparticle types fuse with each other. This exercise has been
performed [33, 34] in the context of the thin cylinder limit, and it has been found that these
admissibility rules correspond to the particles and fusion rules of su(k)r . However, one must
be cautious that many bulk states with differing properties may have the same thin torus limit.
Nonetheless, since the Jacks are completely described by their thin limit (which is just their
root state), this calculation immediately implies that the fusion relations of quasiholes of the
(k, r) admissible Jacks are precisely that of the su(k)r .

3.2. The central charge of the Jack polynomials

We now extract the central charge for the Jack polynomial wavefunctions. We consider a
wavefunction corresponding to the (k, r) Jack as in equation (43), fixing α as in equation (38)
throughout (we do not write the parameter α explicitly from here on).

We now proceed as in section 2.1 to extract the central charge. As above, we begin with

φ0 = 〈ψ1(z1)ψ1(z2) · · · ψ1(zN)〉 = Jk0r−1k0r−1k···k0r−1k∏N
i<j=1(zi − zj )

1
ν

. (48)

Without loss of generality, since the polynomials are translationally invariant [6], we may
choose z1 = 0. This is quite convenient as the only orbital which does not vanish as z → 0
is the m = 0 orbital, so it is easy to see when certain wavefunctions do or do not vanish.
Further, the remaining Jack polynomial, having taken this limit, is given by the partition
[(k −1)0r−1k0r−1k · · · k0r−1k] with a coefficient of unity since all our Jack polynomials share
the ‘monic’ normalization.

Now take the limit z2 → 0, and expand as in equation (26). For k > 2, there will be a
term proportional to z2 in the expansion (as in equation (26)), which means that we have not
fused to the identity, and we simply take the leading term of the expansion, which is given by
the Jack with partition [(k − 2)0r−1k0r−1k · · · k0r−1k]. In the process, from the divergence of
the Jastrow factor we find the relation

h1 + h1 − h2 = 1

ν
. (49)

10
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We now take the coordinate z3 to zero, and so forth, until we reach J10r−1k0r−1k···k0r−1k . During
this process, keeping track of successive divergencies of the Jastrow factor we find the series
of equations for the scaling dimensions which are

h1 + hm − hm+1 = m

ν
, (50)

where m = 1, . . . , k − 1 (with hk = 0), which is consistent with our expectation from
equation (3).

We now focus on the last fusion of this series (see equation (30)) from which we will get
the central charge. Here, we let zk → 0:

J10r−1k0r−1k···k0r−1k(zk, zk+1, . . . , zN)∏N
i=k z

k−1
ν

i

∏N
i<j=k(zi − zj )

1
ν

= 1

z
k−1
ν

k

∏N
i=k+1 z

k
ν

i

∏N
i<j=k+1(zi − zj )

1
ν

× (J0r k0r−1k···k0r−1k(zk+1, . . . , zN) + zkP1 + z2
kP2 + · · ·)

×
⎛
⎝1 + zk

1

ν

N∑
j=k+1

1

zj

+ z2
k

⎛
⎝1

2

1

ν

(
1 +

1

ν

) N∑
j=k+1

1

z2
j

+
1

ν2

N∑
i<j=k+1

1

zizj

⎞
⎠ + · · ·

⎞
⎠ .

(51)

The polynomials P1, P2 can be obtained by expanding the Jack polynomial
J10r−1k0r−1k···k0r−1k(zk, zk+1, . . . , zN) for small zk . In this expansion, the resulting polynomials
are in fact other Jacks with the same value of α, i.e., they are (k, r) admissible. This expansion
is shown explicitly in appendix B giving

J10r−1k0r−1k···k0r−1k(zk, zk+1, . . . , zN)=J0r k0r−1k···k0r−1k(zk+1, . . . , zN)

+ zkA1J0r−11(k−1)0r−1k···k0r−1k(zk+1, . . . , zN)

+ z2
k[B1J0r−210(k−1)0r−1k···k0r−1k(zk+1, . . . , zN)

+ B2J0r−11(k−1)0r−21(k−1)0r−1k···k0r−1k(zk+1, . . . , zN)] + · · · . (52)

For simplicity of notation, let us define the following notation:

P0 = J0r k0r−1k···k0r−1k(zk+1, . . . , zN)

P1,0 = J0r−11(k−1)0r−1k···k0r−1k(zk+1, . . . , zN)

P2,0 = J0r−210(k−1)0r−1k···k0r−1k(zk+1, . . . , zN)

P2,1 = J0r−11(k−1)0r−21(k−1)0r−1k···k0r−1k(zk+1, . . . , zN),

(53)

where, of course, in equation (51) we have P1 = A1P1,0 and P2 = B1P2,0 + B2P2,1. The
coefficients A1, B1, B2 are to be determined. Of these coefficients, A1, B1 are simple to
evaluate whereas B2 is somewhat harder. Fortunately, we will not actually need to fully
evaluate B2. Leaving the values of these coefficients unspecified for the moment (we derive
them in appendix B), we have, for the products of brackets in equation (51),

1

z
k−1
ν

k

∏N
i=k+1 z

k
ν

i

∏N
i<j=k+1(zi − zj )

1
ν

(
J0r k0r−1k···k0r−1k(zk+1, . . . , zN) + zkP1 + z2

kP2 + · · ·)

×
⎛
⎝1 + zk

1

ν

N∑
j=k+1

1

zj

+ z2
k

⎛
⎝1

2

1

ν

(
1 +

1

ν

) N∑
j=k+1

1

z2
j

+
1

ν2

N∑
i<j=k+1

1

zizj

⎞
⎠ + · · ·

⎞
⎠

= 1

z
k−1
ν

k

∏N
i=k+1 z

k
ν

i

∏N
i<j=k+1(zi − zj )

1
ν

⎛
⎝P0 + zk

⎛
⎝A1P1,0 +

1

ν

N∑
j=k+1

1

zj

· P0

⎞
⎠
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+ z2
k

⎛
⎝
⎛
⎝1

2

1

ν

(
1 +

1

ν

) N∑
j=k+1

1

z2
j

+
1

ν2

N∑
i<j=k+1

1

zizj

⎞
⎠ · P0

+ A1P1,0 · 1

ν

N∑
j=k+1

1

zj

+ B1P2,0 + B2P2,1

⎞
⎠ + · · ·

⎞
⎠ (54)

The coefficient A1 is derived in appendix B and is given by A1 = − 1
ν
. We also have, as shown

in appendix E, the identity∑
i

∂

∂zi

P0 = rP1,0. (55)

We can thus derive a series of identities∑
i

∂

∂zi

J0r k0r−1k···k0r−1k(zk+1, . . . , zN) = rJ0r−11(k−1)0r−1k···k0r−1k(zk+1, . . . , zN)

=
∑

i

∂

∂zi

∏
j

zr
j Jk0r−1k···k0r−1k(zk+1, . . . , zN)

= r
∑

i

1

zi

∏
j

zr
j Jk0r−1k···k0r−1k(zk+1, . . . , zN)

= r
∑

i

1

zi

J0r k0r−1k···k0r−1k, (56)

where we have used the fact that Jk0r−1k···k0r−1k(zk+1, . . . , zN) is a highest weight state by virtue
of being a ground state. The above shows that

P1,0 =
∑

i

1

zi

P0. (57)

Then we have ⎛
⎝A1P1,0 +

1

ν

N∑
j=k+1

1

zj

· P0

⎞
⎠ = 1

ν

⎛
⎝−P1,0 +

N∑
j=k+1

1

zj

· P0

⎞
⎠ = 0 (58)

so the first-order term in zk vanishes as it should. We now have

1∏N
i=k+1 z

k
ν

i

∏N
i<j=k+1(zi − zj )

1
ν

(
J0r k0r−1k···k0r−1k(zk+1, . . . , zN) + zkP1 + z2

kP2
)

×
⎛
⎝1 + zk

1

ν

N∑
j=k+1

1

zj

+ z2
k

⎛
⎝1

2

1

ν

(
1 +

1

ν

) N∑
j=k+1

1

z2
j

+
1

ν2

N∑
i<j=k+1

1

zizj

⎞
⎠
⎞
⎠

= 1∏N
i=k+1 z

k
ν

i

∏N
i<j=k+1(zi − zj )

1
ν

⎛
⎝P0 + z2

k

⎛
⎝
⎛
⎝1

2

1

ν

(
1 − 1

ν

) N∑
j=k+1

1

z2
j

− 1

ν2

N∑
i<j=k+1

1

zizj

⎞
⎠ · P0 + B1P2,0 + B2P2,1

⎞
⎠ + · · ·

⎞
⎠ (59)
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Note that k/ν = r . A few additional identities, shown in appendix E, are now also useful

P0∏
i=k+1 z

k/ν

i

= Jk0r−1k···k0r−1k(zk+1, . . . , zN) (60)

P2,0∏
i=k+1 z

k/ν

i

= 1∏
i=k+1 z2

i

J10(k−1)0r−1k···k0r−1k(zk+1, . . . , zN) (61)

P2,1∏
i=k+1 z

k/ν

i

= 1∏
i=k+1 zi

J1(k−1)0r−21(k−1)···k0r−1k(zk+1, . . . , zN). (62)

Now as in equation (33) let zk+1 → 0, and isolate the singularities in 1
/
z2
k+1. We only need

the leading singularity, so we can immediately see that P2,1 does not matter because it is less
singular (after being multiplied by

∏
i=k+1 z

−k/ν

i ). Also when zk+1 → 0 we have, to leading
order,

1∏
i=k+1 z

k/ν

i

⎛
⎝1

2

1

ν

(
1 − 1

ν

) N∑
j=k+1

1

z2
j

− 1

ν2

N∑
i<j=k+1

1

zizj

⎞
⎠ · P0

= 1

2

1

ν
(1 − 1

ν
)

1

z2
k+1

Jk0r−1k···k0r−1k(zk+1 = 0, . . . , zN)

= 1

2

1

ν

(
1 − 1

ν

)
1

z2
k+1

J(k−1)0r−1k···k0r−1k(zk+2, . . . , zN) (63)

also
P2,0∏

i=k+1 z
k/ν

i

= 1∏
i=k+1 z2

i

J10(k−1)0r−1k···k0r−1k(zk+1, . . . , zN)

=︸︷︷︸
zk+1→0

1

z2
k+1

1∏
i=k+2 z2

i

J10(k−1)0r−1k···k0r−1k(zk+1 = 0, . . . , zN)

= 1

z2
k+1

1∏
i=k+2 z2

i

J00(k−1)0r−1k···k0r−1k(zk+2, . . . , zN)

= 1

z2
k+1

J(k−1)0r−1k···k0r−1k(zk+2, . . . , zN). (64)

We are now in a position to obtain the final equation: as zk+1 → 0 we have

1∏N
i=k+1 z

k
ν

i

⎛
⎝P0 + z2

k

⎛
⎝
⎛
⎝1

2

1

ν

(
1 − 1

ν

) N∑
j=k+1

1

z2
j

− 1

ν2

N∑
i<j=k+1

1

zizj

⎞
⎠· P0 + B1P2,0 + B2P2,1

⎞
⎠
⎞
⎠

= Jk0r−1k···k0r−1k(zk+1, . . . , zN) +
1

z2
k+1

(
1

2

1

ν

(
1 − 1

ν

)
+ B1

)
× Jk−10r−1k···k0r−1k(zk+2, . . . , zN). (65)

The coefficient B1 is derived in appendix B giving

B1 = r(r − 1)

2

α + 1

((r − 1)α + 1)((r − 2)α + 1)
= − r

2k

(r − k − 2)(r − 1)

−kr + 2k + 1
. (66)

Taking the appropriate ratio as in equation (35), we then have

2h2
1

c
= 1

2

1

ν

(
1 − 1

ν

)
+ B1, (67)
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where h1 = r(k−1)

2k
. With a trivial algebra we obtain

c = r
k − 1

k + r
(2k + 1 − kr). (68)

This is precisely the central charge of the Wk(k + 1, k + r) CFT [38–40] as will be discussed
further below.

3.3. The quasihole scaling exponent for Jack polynomials

In this section, we obtain the quasihole scaling dimension from the polynomial wavefunctions.
The strategy is quite similar to that described above—fusion of fields together to form the
stress–energy tensor as in equation (4) giving a prefactor proportional to the field dimension.

We must first write a wavefunction that describes an elementary quasihole at some position
w and another object with which it can uniquely fuse to form the identity at the origin. This
other object is precisely the fusion of k−1 quasiholes. These wavefunctions can be established
by invoking the clustering conditions as described in [8]:

�(w; z1, . . . , zN)|z1=z2···=zk=w = 0 (69)

�(w; z1, . . . , zN)|z1=z2=0 = 0. (70)

The unique such admissible wavefunction is a superposition of the Jacks given by [8]

�(w; z1, . . . , zN) =
N/k∑
i=0

(
−w

k

)i

|i〉, (71)

where |i〉 are the Jack polynomials

|0〉 = J0k0r−1k0r−1k···0r−1k0r−1k (72)

|1〉 = J1(k−1)0r−1k0r−1k···0r−1k0r−1k (73)

|2〉 = J1(k−1)0r−2(k−1)0r−1k···0r−1k0r−1k (74)

... (75)

and the Jack parameter α is as above always taken to be −(k + 1)/(r − 1).
If we had generated this wavefunction from a conformal field theory (see equation (20)),

there would generically be an additional non-single-valued dependence on the quasihole
coordinate w (i.e., there may be branch cuts). However, this really just provides a normalization
for the wavefunction whereas the Jacks are not normalized with respect to integration over
all the z coordinates (and supposedly the CFT correlator is normalized, see [24, 36, 37] for a
detailed discussion of this issue). We thus expect that there may be some arbitrary prefactor
f (w, 0) which multiplies our Jack wavefunction in order to produce the CFT wavefunction.

We thus write a proposed correlator corresponding to a single quasihole at w and k − 1
quasiholes at the origin:

〈σ ′(0)σ (w)ψe(z1)ψe(z2) · · · ψe(zN)〉 = f (w, 0)
�(w; z1, . . . , zN)∏N

i=1(zi − 0)
k−1
k (zi − w)

1
k

. (76)

Here we have notated the primary field associated with the quasihole as σ and the field
associated with the fusion of k − 1 quasiholes as σ ′. These two fields fuse to give the identity

14



J. Phys. A: Math. Theor. 42 (2009) 245206 B A Bernevig et al

as in equation (4). We now want to let the quasihole coordinate w → 0 and examine the result
of this fusion. Keeping terms up to order w2 we obtain

〈σ ′(0)σ (w)ψe(z1) · · · ψe(zN)〉 = f (w, 0)∏N
i=1 zi

(
|0〉 − w

k
|1〉 +

(w

k

)2
|2〉 + · · ·

)

×
⎛
⎝1 +

1

k
w

N∑
i=0

1

zi

+ w2

⎛
⎝1

2

1

k

(
1 +

1

k

) N∑
i=0

1

z2
i

+
1

k2

∑
i<j

1

zizj

⎞
⎠ + · · ·

⎞
⎠ . (77)

We now massage the terms in the product of the two brackets. The term independent of w

is |0〉. Thus, the unknown prefactor f (w, 0) must contain the divergent prefactor shown in
equation (4). The term linear in w is

1

k

(
−|1〉 +

N∑
i=0

1

zi

|0〉
)

. (78)

Considering the form of equation (4) we now must show that this linear term vanishes. This is
demonstrated explicitly in appendix D. We now go to the second-order terms and write them
as⎛
⎝1

2

1

k

(
1 +

1

k

) N∑
i=0

1

z2
i

+
1

k2

∑
i<j

1

zizj

⎞
⎠ |0〉 − 1

k2

N∑
i=0

1

zi

|1〉 +
1

k2
|2〉

=
⎛
⎝1

2

1

k

(
1 − 1

k

) N∑
i=0

1

z2
i

− 1

k2

∑
i<j

1

zizj

⎞
⎠ |0〉 +

1

k2
|2〉, (79)

where we have again used the identity
∑

i (1/zi)|0〉 = |1〉 proved in appendix D. So we have
hence proved that for w → 0 we have

〈σ ′(0)σ (w)ψ(z1) · · · ψ(zN)〉 = f (w, 0)∏N
i=1 zi

×
⎛
⎝|0〉 + w2

⎛
⎝
⎛
⎝1

2

1

k

(
1 − 1

k

) N∑
i=0

1

z2
i

− 1

k2

∑
i<j

1

zizj

⎞
⎠ |0〉 +

1

k2
|2〉
⎞
⎠ + · · ·

⎞
⎠ . (80)

To make this look nicer, we can write (again using the same identity) |0〉 = J0k0r−1k0r−1k···k0r−1k =∏N
i=1 ziJk0r−1k0r−1k···k0r−1k = ∏N

i=1 zi�GS where �GS is the ground state in the absence of the
quasiholes (equation (12)). Hence we have

〈σ ′(0)σ (w)ψe(z1) · · · ψe(zN)〉 = f (w, 0)

×
⎛
⎝�GS + w2

⎛
⎝
⎛
⎝1

2

1

k

(
1− 1

k

) N∑
i=0

1

z2
i

− 1

k2

∑
i<j

1

zizj

⎞
⎠�GS +

1

k2

1∏N
i=1 zi

|2〉
⎞
⎠+ · · ·

⎞
⎠ .

(81)

Thus from equation (4) we have

(2hσ /c)〈T (0)ψe(z1) · · · ψe(zN)〉

=
⎛
⎝1

2

1

k

(
1 − 1

k

) N∑
i=0

1

z2
i

− 1

k2

∑
i<j

1

zizj

⎞
⎠�GS +

1

k2

1∏N
i=1 zi

|2〉. (82)
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Note that T is the stress–energy tensor of the CFT not including the bose vertex operators. We
now let one of the electron coordinates approach the position 0 giving a leading singularity

lim
z1→0

(2hσ /c)〈T (0)ψe(z1) · · · ψe(zN)〉 = 1

z2
1

1

2

1

k

(
1 − 1

k

)
�GS + · · · . (83)

From the OPE equation (5) we thus conclude that

2
hσh1

c
= 1

2

k − 1

k2
. (84)

Using the above expression (equation (3)) for h1 we then obtain

hσ = c

2kr
, (85)

thus relating the scaling dimension of the quasiparticle to the central charge. As expected
this result gives precisely the scaling dimension of the minimal quasiparticle field of the
Wk(k + 1, k + r) CFT [38–40] as will be discussed further below.

In fact, since we also know that the charge of the quasiparticle is −eν/k (there is a k-fold
fractionalization of the Laughlin quasiparticle), then by equations (17) and (22) we know
immediately that the fusion of the quasiparticle with the electron field must create another
field φ with scaling dimension

hφ = h1 + hσ + 1/k. (86)

Indeed, again in the Wk(k + 1, k + r) CFT, the fusion of σ with ψ1 creates a field of precisely
this scaling dimension, as we will see below.

In principle, with enough effort, one can calculate the scaling dimension of other fields
using similar techniques.

4. W-algebra quantum Hall wavefunctions

In this section, we describe a very large family of CFTs known as W-algebras. As discussed
above, these CFTs may be used in construction of quantum Hall wavefunctions, and further,
some of them apparently correspond to the wavefunctions obtained from Jack polynomials.

4.1. Introductory facts about some W-algebras

A great deal is known about W-algebras, and the variety of W-algebras that have been studied
in the literature is both vast and growing. We refer the reader to [38] for general information
about this field. In this paper, we will focus on some of the simplest cases known which
are the minimal models of the Wk algebras. These minimal models were first described in
[39, 41]. In this paper, we will follow the approaches of [39, 40], and then specify (and
simplify) to the situations in which we are interested (there are, however, other ways to
describe the same CFTs; see [38]). Nothing in this section is new, but is rather just a
distillation of prior results from these references.

Each of the simple Lie algebra An−1,Bn,Dn, E6, E7, E8 can be associated with a W-
algebra. Among these we will only be interested in WAk−1 which has Zk symmetry. These
are sometimes notated as just Wk . We leave for future research the question of what quantum
Hall states can be constructed from other W-algebras [38].

Focusing on the algebra Wk , a field �(l; l′) is specified by two vectors l and l′ of k − 1
positive integers

(l; l′) = (l1, . . . , lk−1; l′1, . . . , l
′
k−1). (87)
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The fusion of such fields can be written symbolically as

�(l; l′) × �(m; m′) =
∑
(s;s′)

[�(s; s′)]. (88)

The values of (s; s′) that contribute to the right-hand side for a given (l; l′) and (m; m′) are
known as the ‘qualitative structure’ or ‘selection rules’ of the algebra. Treating (l; l′) as the
corresponding specified representation of sl(k)×sl(k) gives the proper structure. Equivalently,
we think of the vectors

(l1 − 1, l2 − 1, . . . , lk−1 − 1) (89)

(l′k−1 − 1, . . . , l′2 − 1, l′1 − 1) (90)

as the Dynkin labels of two SU(k) representations [3] so that (l; l′) are labels for a
representation of SU(k) × SU(k). The qualitative structure of the fusion in SU(k) × SU(k)

then is the qualitative structure of our W-algebra. It is useful to note that when all of the li
values are unity, we have the trivial, or identity, representation.

To relate these labels to more familiar notation, we note that Dynkin labels can be trivially
converted to Young tableau [3]. In SU(k), the k − 1 labels give the respective differences
between the number of boxes in each of the k − 1 successive rows. So for example, for k = 5
the Dynkin labels (3, 0, 2, 0) represent the tableau

(91)
.

The identity representation is the empty tableau (although for clarity we will sometimes write
1). Note that to write a field configuration, we must increase each Dynkin label by 1 and note
that the primed indices are read right to left and the unprimed left to right. Thus, a typical
field for the case of k = 5 can be written graphically as

�(4, 1, 3, 1; 2, 2, 2, 1) =
⎛
⎝ ;

⎞
⎠ . (92)

A minimal model has parameters tuned so that a finite algebra closes. In particular, we specify
a minimal model by two integers p and p′ both greater than k which are relatively prime. This
theory is typically called Wk(p, p′) or WAk−1(p, p′). The fields �(l; l′) that form a closed
algebra are given by the set satisfying the constraint

k−1∑
i=1

li � p′ − 1 (93)

k−1∑
i=1

l′i � p − 1. (94)

These constraints can be thought of as restricting the corresponding Young tableaus to have
no more than p′ − k and p − k columns, respectively. This type of restriction in the number
of columns of a tableau is analogous to what happens when one looks at representations of
SU(k) at level m where m is p′ − k or p − k respectively.

Furthermore, in the minimal model there is an association of fields

�(l; l′) = �(l̃m; l̃′m) m = 1, . . . , (k − 1), (95)
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where

l̃m = (lk−m+1, . . . , lk−1, l0, l1, . . . , lk−m−1) (96)

l̃′m = (l′k−m+1, . . . , l
′
k−1, l

′
0, l

′
1, . . . , l

′
k−m−1) (97)

with

l0 = p′ −
k−1∑
i=1

li (98)

l′0 = p −
k−1∑
i=1

l′i . (99)

The number of Young tableaus in SU(k) with no more than m columns (and as
usual no more than k − 1 rows) is given by

(
k−1
m

)
. Thus, we can apparently write

(p − 1)!(p′ − 1)!/((p − k)!(p′ − k)!(k − 1)!2) fields �, specified by a combination of
two different Young tableaus (one with no more than p − k rows and one with no more than
p′ − k rows). However, the k-fold identification of fields in equation (95) leaves us with only

(p − 1)!(p′ − 1)!

(p − k)!(p′ − k)!(k − 1)!k!
(100)

distinct primary fields in this algebra.
It is convenient to define5

α± = ±1√
2
(p/p′)±

1
2 (101)

α0 = α+ + α− = (p − p′)/
√

2pp′. (102)

The central charge of this algebra is

ck(p;p′) = (k − 1)
(
1 − 2k(k + 1)α2

0

)
(103)

= (k − 1)

(
1 − k(k + 1)(p − p′)2

pp′

)
. (104)

The algebra is unitary [42] if and only if p = p′ ± 1, which is the only case where the central
charge can be positive. In a dynamical theory, the central charge has the interpretation of a
density of states or heat capacity.

The scaling dimension (or conformal weight) of a field �(l; l′) is given by

h(l; l′) = −α2
0k(k2 − 1)/12 +

⎡
⎣k−1∑

i=1

k−1∑
j=1

(liα+ + l′iα−)Fij (ljα+ + l′jα−)

⎤
⎦ (105)

where F is a symmetric k − 1 dimensional matrix F with matrix elements

Fij = j (k − i)/k j � i. (106)

(This is the inverse of the Cartan matrix of SU(k).)

5 We follow the convention of [39] for these variables. The definitions of [40] differ by factors of 2.
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This theory has a conserved Zk charge. The charge of a field �(l; l′) is given by

q =
(

k−1∑
n=1

[mn(ln − 1) − m′n(l′n − 1)]

)
mod k, (107)

where m = p mod k and m′ = p′ mod k.
Finally, we note that for non-unitary theories, an interesting quantity to define is the

so-called ‘effective central charge’ given by

c̃ = c − 24hmin, (108)

where hmin is the conformal weight of the primary field with the smallest (most negative)
dimension (sometimes known as the pseudovacuum field). This quantity is necessarily
positive, and like the central charge in unitary theories, represents a density of levels. For the
minimal Wk(p, p′) theories being considered in this section, we have [43]

c̃k(p, p′) = (k − 1)

(
1 − k(k + 1)

pp′

)
. (109)

4.2. Cluster wavefunctions from W-algebras

Examining the structure of this W-algebra, we note that there always exist simple currents
corresponding to the desired parafermion fields from equation (1). Given p and p′ relatively
prime and greater than k, we examine the minimal model Wk(p, p′). In this algebra, we find
simple currents

ψ1 = �(p′ − k + 1, 1, 1, . . . , 1; 1, 1, . . . , 1) (110)

ψ2 = �(1, p′ − k + 1, 1, . . . , 1; 1, 1, . . . , 1) (111)

...

ψk−1 = �(1, 1, . . . , 1, p′ − k + 1; 1, 1, . . . , 1) (112)

and of course the identity operator is given by

ψ0 = �(1, 1, 1, . . . , 1; 1, 1, . . . , 1). (113)

It is worth noting that due to the field identification equation (95), these parafermion fields
can equally well be expressed as

ψ1 = �(1, 1, . . . , 1; 1, 1, . . . , 1, p − k + 1) (114)

ψ2 = �(1, 1, . . . , 1; 1, 1, . . . , p − k + 1, 1) (115)

...

ψk−1 = �(1, 1, . . . , 1;p − k + 1, 1, . . . , 1). (116)

In terms of the Young tableau, we can express these fields compactly (in both representations)
as
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ψn =

p − k columns

n rows ; 1 (117)

= 1 ;

p− k columns

n rows , (118)

where we have written 1 for the identity representation or the empty tableau.
Using equation (105) we determine that the scaling dimension of these parafermion fields

is indeed given by the desired equation (3) with

r = (p − k)(p′ − k). (119)

Hence Wk(p, p′) is a CFT of the Z
(r/2)

k type as described above. Using equation (6), we find
that the algebra Wk(p, p′) constructs a quantum Hall wavefunction at filling fraction and shift
(see equation (14))

ν = k

(p − k)(p′ − k) − kM
S = (p − k)(p′ − k) + M (120)

with M being a non-negative integer. For M = 0, this wavefunction has the property that it is
a simple k-cluster wavefunction, that is, it does not vanish when k particles come to the same
point, but it vanishes as r powers when the k + 1st arrives. We emphasize that for arbitrary
r, there are generically many CFTs that can correspondingly generate many inequivalent
wavefunctions with this property (it appears, however, that at least for r = 2 and k = 2, r = 3,
the CFT is uniquely defined by this property). Note that the unitary CFTs correspond to
p = p′ ± 1. Thus we expect a series of unitary wavefunctions at filling fraction and shift

ν = k

m(m + 1) − kM
S = m(m + 1) + M (121)

with m > k. Note again that m = 2 is the Read–Rezayi series. The case of m = 3 and k = 2
corresponds to the tricritical Ising CFT, which has previously been proposed for a quantum
Hall wavefunction by [24, 44].

4.3. The series Wk(k + 1, k + r)

The W-algebras of interest corresponding to the above-discussed Jack polynomials are
Wk(k + 1, k + r). Plugging p = k + 1 and p′ = k + r into the above expression gives
us a wavefunction with the properties described in the previous section. Here, we must choose
k and r both integers � 2 and where k + 1 and k + r are relatively prime. As discussed above,
these algebras have Zk symmetry and central charge (plugging into equation (104))

c = (k − 1)(1 − k(r − 2))r

k + r
(122)

which matches the central charge of the (k, r) Jack polynomial found in equation (68).
The case of r = 2 is the Zk parafermion [26] CFT model which describes the

corresponding Zk Read–Rezayi wavefunctions [5]. It is easy to see that the r = 2 case
is the only value of r for which the central charge is positive, and is hence the only case where
Wk(k + 1, k + r) is unitary. The case of k = 2 simplifies to precisely the Virasoro minimal
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model [3] M(3, 2 + r). The k = 2, r = 2 case here, which is the Ising conformal field
theory, corresponds to the Moore–Read Pfaffian [4]. The k = 2, r = 3 case corresponds to
the recently discussed Gaffnian wavefunction [12].

Using the fact that p = k + 1 here, because of the identification of fields mentioned above
in equation (95), all fields may be written as a single Young tableau and the identity

� = (tableau; 1) , (123)

where the possible tableaus are in a one-to-one correspondence with those of su(k)r .
Furthermore, it turns out that fusion rules of these fields are also precisely those of su(k)r .
This connection was noted in [34] where, as mentioned above, the fusion rules of (k, r) cluster
states in the thin torus limit were also found to be that of su(k)r . Thus we point to this as
further evidence of the connection between Wk(k + 1, k + r) and the (k, r) Jack wavefunctions.

We now examine some of the fields of this W-algebra in detail. In addition to the ψn

fields described above, we now examine a possible quasiparticle field. Let us consider a field

σ = ( ; 1) (124)

whose Zk charge is 1 and scaling dimension is (see equations (107) and (105))

hσ = (k − 1)(1 + k(2 − r))

2k(r + k)
. (125)

It is easy to check that this indeed satisfies the predicted relationship equation (85). The fusion
of the simple current with this elementary spin field is particularly simple. We have

ψ1 × σ = φ, (126)

where φ is the field

φ =

r columns

;1
(127)

which has scaling dimension (again using equation (105))

hφ = 2k2 − (k + r)2 + k(r2 − 3)

2k(r + k)
. (128)

In equation (16) we have

�σ1 = hφ − hσ − h1 = −1/k (129)

as predicted by equation (86). Thus, the quantum Hall state generated by this CFT has
a quasiparticle of charge e∗ = −eν/k. It is easy to check that this is the lowest charge
quasiparticle that can be constructed from the theory.

From equation (109), we calculate the effective central charge c̃ which we find to be given
by

c̃ = r(k − 1)

k + r
. (130)

Interestingly this is the value of the central charge found in [8] by counting the density of
edge modes on a disk for (k, r) Jack wavefunctions. (Strictly speaking, this reference finds
c̃ + 1, where the +1 corresponds to the U(1) charge boson.) Thus, it appears to be the effective
central charge that determines the density of states. This is perhaps not surprising since the
central charge of the non-unitary W-models is negative, and a negative density of states would
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be unphysical. Also in [8], the scaling dimension of the quasiparticle is bounded numerically.
While the result of this calculation agrees with the W-model prediction for unitary cases, it
does not agree for the non-unitary cases. This apparently contradictory result is not currently
understood.

5. Summary

We have shown here that the (k, r) Jack quantum Hall states likely correspond to the
Wk(k + 1, k + r) CFTs. We have shown that both have simple currents ψn with Zk

symmetry having the scaling dimension given by equation (3). They both have an elementary
quasiparticle field σ having the scaling dimension given by equation (85), and ψ1 fuses with
σ to yield another field φ with the scaling dimension given by equation (86). And, as shown
previously in [34], the fusion algebras of both systems are identical. While this does not
completely prove that the two theories are equivalent, it is very strong evidence. We comment
that for the case of k = 2, a full proof of equivalence has been given by [14].

Making connection to prior work of [8] we find that the central charge determined in
that work by edge state analysis in that work agrees with the W-algebra central charge in the
unitary cases and corresponds to the effective central charge of the W-algebra in the non-
unitary cases (see also [46] where the effective central charge edge physics was found for the
Haldane–Rezayi state). However, the analysis of the quasiparticle exponent in that work does
not appear to be in agreement with the current W-algebra analysis in non-unitary cases.

It is interesting that among all of the wavefunctions described by the Jack polynomials,
only the Read–Rezayi series and the Laughlin series correspond to unitary CFTs. Presumably
this means [24, 25] that, other than these specific cases, the Jack polynomials cannot correspond
to gapped phases of matter. Nonetheless, they can still correspond to critical points between
phases, and understanding the nature of this criticality can teach us much about the adjacent
phases. Other unitary W-algebras could in principle correspond to gapped phases. We note
however, as mentioned in [24], that the identification of a CFT for use as a quantum Hall
wavefunction does not yet imply that this wavefunction is the ground state of a Hamiltonian.
Further work will be required to try to construct such Hamiltonians [18] for any proposed
wavefunction.
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Appendix A. Detailed definition of the Jack polynomials

There are several equivalent ways to define the Jack polynomials [9, 20–23]. The reader
should note, however, that there are several standard inequivalent normalizations that are used.
Note also that in this appendix, the standard description of a partition is used rather than the
occupation basis description.

Let us write the form of the Jack polynomial from [21] (see also [20]). We start by
defining the Jacks which are a function of a single variable

J α
k (z1) = zk

1(1 + α) · · · (1 + (k − 1)α). (A.1)
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We then define each Jack in terms of Jacks with one fewer variables

J α
λ (z1, z2, . . . , zN) =

∑
μ⊆λ

J α
μ (z2, . . . , zN)z

|λ/μ|
1 βλμ, (A.2)

the summation is over all subpartitions μ of λ (μ ⊆ λ) such that the skew partition λ/μ is a so-
called horizontal strip. Here, λ/μ is a horizontal strip if λ1 � μ1 � λ2 � μ2 � λ3 � μ3 . . . ,

or in other words, if no two distinct points of λ/μ, regarded as the difference λ − μ of
their Young diagrams, lie in the same column (draw the diagram of λ then color only the
squares of λ that do not belong to μ; if no two colored squares are in the same column then
λ/μ is a horizontal strip). The exponent |λ/μ| in the above equation is just the difference∑

i λi −∑
j μj (note that λ and μ do not have to have identical length).

The coefficients βλ,μ are given by (see proposition 6.1 of [21])

βλ,μ =
∏

(i,j)∈λ Bλ
λ,μ(i, j)∏

(i,j)∈μ B
μ
λ,μ(i, j)

, (A.3)

where

Bν
λ,μ(i, j) = h∗

ν(i, j) if λ′
j = μ′

j ;= hν
∗(i, j) otherwise. (A.4)

In the above, λ′ and μ′ are the conjugate partitions of λ,μ, obtained by transposing the Young
diagram of the partition λ,μ (i.e., one writes them as Young diagrams and then interchanges
the rows with the columns). h∗

λ and hλ
∗ are the generalized upper and lower hook lengths of

the partition λ:

h∗
λ(i, j) = λ′

j − i + α(λi − j + 1), hλ
∗(i, j) = λ′

j − i + 1 + α(λi − j), (A.5)

the product
∏

(i,j)∈λ means product over all the pairs (i, j) in the Young tableau of partition λ,
i.e., i goes over all the components of the partition λ = (λi) whereas, for a set i, j runs from
1 to λi .

Unfortunately, this relatively simple definition is not the normalization that we use within
this paper. The above normalization corresponds to the normalization of Stanley [20], in which
the coefficient of the root monomial of the Jack polynomial J α

λ is equal to vλλ(α), where

vλλ(α) =
∏

(i,j)∈λ

hλ
∗(ij). (A.6)

In this paper, on the other hand, we use the ‘monic’ normalization where the coefficient of the
‘root’ (or dominating) monomial is equal to 1. Hence the coefficients βλμ in our case read

βλ,μ = vμμ(α)

vλλ(α)

∏
(i,j)∈λ Bλ

λ,μ(i, j)∏
(i,j)∈μ B

μ
λ,μ(i, j)

. (A.7)

Note that there are cancelations between v’s and B’s which lead to a simplified form, which
we do not write explicitly.

Appendix B. Expansion of the Jack polynomials

In the main text, equation (52), we need to find the expansion of the Jack of partition
λ = [10r−1k0r−1k · · · k0r−1k] into Jacks of one fewer variable. Using the recursive definition
of the Jack functions in the above appendix, this expansion is straightforward, and we can
easily obtain the coefficients of the Jacks corresponding to the partitions

μA1 = [0r−11k − 10r−1k · · · k0r−1k] (B.1)

μB1 = [0r−210k − 10r−1k · · · k0r−1k] (B.2)
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μB2 = [0r−11k − 10r−21k − 1 · · · k0r−1k]. (B.3)

Note that since the coefficient B2 is not needed for the calculation of the central charge, we
will not derive it here since it is tedious.

B.1. Coefficient A1

Let us now compute the coefficient A1 = βλμA1 . For the two partitions λ and μA1 we
have λi = μ

A1
i ∀ i = 1, . . . , N − k − 1 where N is the original number of particles

(N = l(λ) + k = l(μA1) + k, where l(λ) is the length of the partition λ—i.e., the number
of elements of λ without counting the zeros—which means the length of λ is also equal
to the length of μA1 . The only place where λ differs from μA1 is the last element
μ

A1
N−k = λN−k − 1 = r − 1. For the conjugate partitions μA′

1 and λ′ we again have

μ
A′

1
i = λ′

i∀i = 1, . . . , r − 1 and i = r + 1, . . . , N� = r
k
(N − k). The only place where

they differ is μ
A′

1
r = λ′

r − 1 = N − k − 1. Since all those terms are identical except for the
two exceptions, in the expression of vλλ(α)

vμμ(α)
we will get cancellations except for j = r and

i = 1, . . . , N − k − 1 or for i = N − k and j = 1, . . . , r (note that for μ, when i = N − kj

stops at r − 1). In all other places, the partition constituents and their conjugates are identical
and the ratio cancels to identity. We get

vλλ(α)

vμA1 μA1 (α)
=

N−k−1∏
i=1

μ
A′

1
r − i + 1 + α

(
μ

A1
i − r

)
λ′

r − i + 1 + α(λi − r)

r−1∏
j=1

μ
A′

1
j − (N − k) + 1 + α

(
μ

A1
N−k − j

)
λ′

j − (N − k) + 1 + α(λN−k − j)

× 1

λ′
r − (N − k) + 1 + α(λN−k − r)

(B.4)

Upon massaging, we get

1

λ′
r − (N − k) + 1 + α(λN−k − r)

= 1 (B.5)

r−1∏
j=1

μ
A′

1
j − (N − k) + 1 + α

(
μ

A1
N−k − j

)
λ′

j − (N − k) + 1 + α(λN−k − j)
= 1 + α(r − 2)

1 + α(r − 1)

1 + α(r − 3)

1 + α(r − 2)

· · · 1 + α

1 + 2α

1

1 + α
= 1

1 + α(r − 1)
(B.6)

hence

vλλ(α)

vμA1 μA1 (α)
=

N−k−1∏
i=1

μ
A′

1
r − i + 1 + α

(
μ

A1
i − r

)
λ′

r − i + 1 + α(λi − r)

1

1 + α(r − 1)
. (B.7)

Now for B’s:∏
(i,j)∈λ Bλ

λ,μA1
(i, j)∏

(i,j)∈μA1 B
μA1

λ,μA1
(i, j)

=
∏

(i,j)∈λ,j �=r Bλ
λ,μA1

(i, j)∏
(i,j)∈μA1 ,j �=r B

μA1

λ,μA1
(i, j)

∗
∏

(i,r)∈λ Bλ
λ,μA1

(i, r)∏
(i,r)∈μA1 ,i �=N−k B

μA1

λ,μA1
(i, r)

, (B.8)

where in the last ratio, the differentiation has been made i �= N − k because μ
A1
N−k = r − 1

and the point (i, j) = (N − k, r) hence does not belong to the Young tableau of the partition
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μA1 . We then have∏
(i,j)∈λ,j �=r Bλ

λ,μA1
(i, j)∏

(i,j)∈μA1 ,j �=r B
μA1

λ,μA1
(i, j)

=
∏

(i,j)∈λ,i �=N−k,j �=r Bλ
λ,μA1

(i, j)∏
(i,j)∈μA1 ,i �=N−k,j �=r B

μA1

λ,μA1
(i, j)

r−1∏
j=1

Bλ
λ,μA1

(N − k, j)

B
μA1

λ,μA1
(N − k, j)

=
r−1∏
j=1

Bλ
λ,μA1

(N − k, j)

B
μA1

λ,μA1
(N − k, j)

, (B.9)

where the first product simplifies because for i �= N − k and j �= r the components of the two
partitions and their conjugates are identical. Because for j = 1, . . . , r − 1 the components of

the conjugate partitions λ′
j and μ

A′
1

j are equal, we have

r−1∏
j=1

Bλ
λ,μA1

(N − k, j)

B
μA1

λ,μA1
(N − k, j)

=
r−1∏
j=1

λ′
j − (N − k) + α(λN−k − j + 1)

μA′
1 − (N − k) + α(μ

A1
N−k − j + 1)

=
r−1∏
j=1

r + 1 − j

r − j
= r,

(B.10)

and we have solved half the products that make up the ratio of B’s.

We must also refine, since λ′
r �= μ

A′
1

r :∏
(i,r)∈λ Bλ

λ,μA1
(i, r)∏

(i,r)∈μA1 ,i �=N−k B
μA1

λ,μA1
(i, r)

=
N−k−1∏

i=1

λ′
r − i + 1 + α(λi − r)

μ
A′

1
r − i + 1 + α

(
μ

A1
i − r

)
× (λ′

r − (N − k) + 1 + α(λN−k − r)) =
N−k−1∏

i=1

λ′
r − i + 1 + α(λi − r)

μ
A′

1
r − i + 1 + α

(
μ

A1
i − r

) .
(B.11)

To get to the equation:∏
(i,j)∈λ Bλ

λ,μA1
(i, j)∏

(i,j)∈μA1 B
μA1

λ,μA1
(i, j)

= r ·
N−k−1∏

i=1

λ′
r − i + 1 + α(λi − r)

μ
A′

1
r − i + 1 + α

(
μ

A1
i − r

) . (B.12)

We finally reach the solution

A1 = βλμA1 =
N−k−1∏

i=1

μ
A′

1
r − i + 1 + α(μ

A1
i − r)

λ′
r − i + 1 + α(λi − r)

1

1 + α(r − 1)
r

×
N−k−1∏

i=1

λ′
r − i + 1 + α(λi − r)

μ
A′

1
r − i + 1 + α(μ

A1
i − r)

= r

1 + α(r − 1)
, (B.13)

which is −1/ν as mentioned in the text. Note the massive number of cancelations that occur
upon multiplying B’s with v’s, which could be done from the very beginning in the formula
but which would then obscure the meaning of the two terms. The reader is again warned that
in the literature it is more common to use a different Jack normalization if one is interested in
combinatoric formulae for which the other normalization is more suitable.

Appendix C. Coefficient B1

The partition μB1 defined previously has the following properties: μ
B1
i = λi,∀i =

1, . . . , N − k − 1 and μ
B1
N−k = λN−k − 2 = r − 2. The conjugate partition has the
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following properties: μ
B ′

1
i = λ′

i∀i = 1, . . . , r − 2 and i = r + 1, . . . , r
k
(N − k) and

μ
B ′

1
r−1 = μ

B ′
1

r = λ′
r−1 − 1 = λ′

r − 1 = N − k − 1. We then have

vμB1 μB1

vλλ

=
∏N−k−1

i=1

∏μ
B1
i

j=1 h
μB1

∗ (i, j)∏N−k−1
i=1

∏λi

j=1 hλ∗(i, j)

∏μ
B1
N−k

j=1 h
μB1

∗ (N − k, j)∏λN−k

j=1 hλ∗(N − k, j)

=
N−k−1∏

i=1

h
μB1

∗ (i, r −1)h
μB1

∗ (i, r)

hλ∗(i, r −1)hλ∗(i, r)
·

r−2∏
j=1

h
μB1

∗ (N − k, j)

hλ∗(N − k, j)

1

hλ∗(N − k, r −1)hλ∗(N − k, r)

=
N−k−1∏

i=1

h
μB1

∗ (i, r − 1)h
μB1

∗ (i, r)

hλ∗(i, r − 1)hλ∗(i, r)
·

r−2∏
j=1

1 + α(r − 2 − j)

1 + α(r − j)

1

1 + α

=
N−k−1∏

i=1

h
μB1

∗ (i, r − 1)h
μB1

∗ (i, r)

hλ∗(i, r − 1)hλ∗(i, r)
1

(1 + α(r − 1))(1 + α(r − 2))
. (C.1)

Now for B’s:∏
(i,j)∈λ Bλ

λ,μB1
(i, j)∏

(i,j)∈μB1 B
μB1

λ,μB1
(i, j)

=
∏N−k−1

i=1

∏λi

j=1 Bλ
λ,μB1

(i, j)∏N−k−1
i=1

∏μ
B1
i

j=1 B
μB1

λ,μB1
(i, j)

∏λN−k

j=1 Bλ(N − k, j)∏μ
B1
N−k

j=1 BμB1 (N − k, j)

(C.2)

=
N−k−1∏

i=1

Bλ(i, r − 1)Bλ(i, r)

BμB1 (i, r − 1)BμB1 (i, r)

r−2∏
j=1

Bλ(N − k, j)

BμB1 (N − k, j)
Bλ(N − k, r − 1)Bλ(N − k, r)

=
N−k−1∏

i=1

hλ
∗(i, r − 1)hλ

∗(i, r)

h
μB1

∗ (i, r − 1)h
μB1

∗ (i, r)

r−2∏
j=1

h∗
λ(N − k, j)

h∗
μB1

(N − k, j)
hλ

∗(N − k, r − 1)hλ
∗(N − k, r)

=
N−k−1∏

i=1

hλ
∗(i, r − 1)hλ

∗(i, r)

h
μB1

∗ (i, r − 1)h
μB1

∗ (i, r)

r−2∏
j=1

r − j + 1

r − j − 1
(1 + α)

=
N−k−1∏

i=1

hλ
∗(i, r − 1)hλ

∗(i, r)

h
μB1

∗ (i, r − 1)h
μB1

∗ (i, r)

r(r + 1)

2
(1 + α). (C.3)

By multiplying v’s and B’s and canceling the common factor (which again could have
been canceled earlier), one gets

B1 = r(r − 1)

2

1 + α

(1 + α(r − 1))(1 + α(r − 2))
. (C.4)

Appendix D. Some Jack polynomial identities

Lassalle [23] found the following identity for Jack polynomials (the normalization in
Lassale’s paper is different than the normalization we use, so this formula has been modified
appropriately):∑

i

∂

∂zi

J α
{λ} =

∑
m

A{λ},{λ(m)}J
α
{λ(m)}, (D.1)
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where the coefficient reads

A{λ},{λ(m)} = 1

α

⎛
⎝ lλ∏

j=m+1

α(λm − λj ) + j − m − 1

α(λm − λj ) + j − m

⎞
⎠
⎛
⎝λm−1∏

j=1

λ
,
j − m + 1 + α(λm − j − 1)

λ
,
j − m + 1 + α(λm − j)

⎞
⎠

× (lλ − m + αλm)(N − m + 1 + α(λm − 1)), (D.2)

with λ(m) being the partition (elements of partitions are denoted by λi , but λ(m) is a full
partition), where we remove 1 from the row λm in the partition λ, with lλ being the length of
the partition λ, and λ′ being the partition conjugate to λ—this means that we write the partition
λ = (λ1, λ2, . . . , λN) as a Young diagram with the ith row of length λi , and then transpose
(as in matrix transposition) this to get λ′. As another example, λ(m) is the partition where 1 is
subtracted from λm in λ : if λ = (4, 4, 2, 2) then λ(1) does not exist because the partition one
would obtain is then (3, 4, 2, 2) which does not satisfy the rule that the partition must be made
of decreasing integers. Then λ(2) = (4, 3, 2, 2), λ(3) does not exist, and λ(4) = (4, 4, 2, 1).

It is now easy to prove that∑
i

∂

∂zi

J0k0r−1k0r−1k···k0r−1k = J1k−10r−1k0r−1k···k0r−1k, (D.3)

First, let us translate everything in partition language

[0k0r−1k0r−1k · · · k0r−1k] → λ

⎛
⎜⎜⎝ r

k
(N − k) +1︸ ︷︷ ︸

k times

,
r

k
(N − k) +1− r︸ ︷︷ ︸

k times

, . . . , 2r +1︸ ︷︷ ︸
k times

, r +1︸︷︷︸
k times

, 1︸︷︷︸
k times

⎞
⎟⎟⎠ .

(D.4)

First, let us find the coefficient of J1(k−1)0r−1k0r−1k···k0r−1k in
∑

i
∂

∂zi
J0k0r−1k0r−1k···k0r−1k .

We have lλ = N . In Lassale’s notation, 1k − 10r−1k0r−1k · · · k0r−1k corresponds to
λ(N), i.e., the partition where 1 was subtracted from λN = 1 , the first two products in
equation (D.2) do not contribute so:

A{λ},{λ(N)} = 1

α
(N − N + αλN)(N − N + 1 + α(λN − 1)) = 1. (D.5)

Hence, we prove that the coefficient is 1, as we wanted. To prove equation (D.3), we also need
to prove that all other contributions vanish. That is, we have a bunch of other λ(m)’s which we
can write as

λ(N−pk) =
(

r

k
(N − k) + 1︸ ︷︷ ︸

k times

,
r

k
(N − k) + 1 − r︸ ︷︷ ︸

k times

, . . . , (p + 1)r︸ ︷︷ ︸
k times

, pr + 1︸ ︷︷ ︸
k−1 times

,

×pr, (p − 1)r︸ ︷︷ ︸
k times

, . . . , 2r + 1︸ ︷︷ ︸
k times

, r + 1︸︷︷︸
k times

, 1︸︷︷︸
k times

)
(D.6)

where p is an integer in the interval
[
0, . . . , N

k
− 1
]
. In the original partition λ, the component

λN−pk = pr + 1. It is now easy to see that the coefficient A{λ},{λ(N−pk)} = 0 for any p. The
reason is that the second product on the rhs in the first row of equation (D.2) vanishes. The
key is the numerator:
λm−1∏
j=1

(λ
,
j − m + 1 + α(λm − j − 1)) =

λN−pk−1∏
j=1

(λ
,
j − (N − pk) + 1 + α(λN−pk − j − 1))

=
pr∏

j=1

(λ
,
j − (N − pk) + 1 + α(pr − j)). (D.7)
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We now want to look at the term in the product that has j0 = (p − 1)r + 1. One can
immediately see that λ

,
j0

= N − (p − 1)k. The product above then becomes

N − (p − 1)k − (N − pk) + 1 + α(pr − (p − 1)r − 1) = k + 1 + α(r − 1) = 0, (D.8)

where we have used the fact that we are looking at Jacks with α = −(k + 1)/(r − 1). As
such we have proved equation (D.3). But we also know that J0k0r−1k0r−1k···k0r−1k = ∏N

i=1 zi

Jk0r−1k0r−1k···k0r−1k and hence we obtain

∑
i

∂

∂zi

J0k0r−1k0r−1k···k0r−1k = (J1(k−1)0r−1k0r−1k···k0r−1k)

=
∑

i

∂

∂zi

N∏
j=1

zjJk0r−1k0r−1k···k0r−1k (D.9)

=
∑

i

1

zi

J0k0r−1k0r−1k···k0r−1k, (D.10)

where we have used the fact that
∑

i
∂

∂zi
Jk0r−1k0r−1k···k0r−1k = 0 by virtue of Jk0r−1k0r−1k···k0r−1k

being a highest weight translationally invariant ground state [6].

Appendix E. Further Jack identities

Proposition 5.1 of [20] states that

J α
λ (z1, . . . , zN) =

∏
i

ziJ
α
λ−I (z1, . . . , zN), (E.1)

where λ − I = (λ1 − 1, λ2 − 1, . . . , λn − 1) where n is the length of the partition. This
of course supports that λn > 0 which means that the zeroth orbital, in occupation number
language, must be zero. This proves our equations (60)–(62).

We then have (the sum over the particles i goes from k +1 to N, but the number of particles
is explicit in the occupation number of any partition)∑

i

∂

∂zi

J α
0r k0r−1k0r−1···k0r−1k

=
∑

i

∂

∂zi

∏
i

zr
i J

α
k0r−1k0r−1···k0r−1k

= r
∑

i

1

zi

∏
i

zr
i J

α
k0r−1k0r−1···k0r−1k

+
∏

i

zr
i

∑
i

∂

∂zi

J α
k0r−1k0r−1···k0r−1k

= r
∏

i

zr−1
i

∑
i

1

zi

J α
0k0r−1k0r−1···k0r−1k

(E.2)

Now by equations (D.9), (D.10) and (D.3) in this paper, we get∏
i

zr−1
i

∑
i

1

zi

J α
0k0r−1k0r−1···k0r−1k

=
∏

i

zr−1
i J α

1k−10r−1k0r−1···k0r−1k

= J α
0r−11k−10r−1k0r−1···k0r−1k

(E.3)

so ∑
i

∂

∂zi

J α
0r k0r−1k0r−1···k0r−1k

= rJ α
0r−11k−10r−1k0r−1···k0r−1k

. (E.4)

28



J. Phys. A: Math. Theor. 42 (2009) 245206 B A Bernevig et al

Note added. Since the completion of this manuscript, we have received a paper from Estienne, Regnault and
Santachiara [47] who consider polynomials with (k, r) clustering which are not Jacks but can be described by unitary
CFTs. This is possible because for k = 2, r > 4 and k > 2, r > 2, the thermodynamic limit Jacks are not the unique
translationally invariant polynomials one can build with the (k, r) clustering property [6, 18]. The central charge of
any (k, r) clustered polynomial can be computed by the method presented here.
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